Dissolution of Silver Nanowires and Nanospheres Dictates Their Toxicity to Escherichia coli

نویسندگان

  • Meeri Visnapuu
  • Urmas Joost
  • Katre Juganson
  • Kai Künnis-Beres
  • Anne Kahru
  • Vambola Kisand
  • Angela Ivask
چکیده

Silver nanoparticles are extensively used in antibacterial applications. However, the mechanisms of their antibacterial action are not yet fully explored. We studied the solubility-driven toxicity of 100 × 6100 nm (mean primary diameter × length) silver nanowires (NWs) to recombinant bioluminescent Escherichia coli as a target representative of enteric pathogens. The bacteria were exposed to silver nanostructures in water to exclude the speciation-driven alterations. Spherical silver nanoparticles (83 nm mean primary size) were used as a control for the effect of NPs shape. Toxicity of both Ag NWs and spheres to E. coli was observed at similar nominal concentrations: the 4h EC50 values, calculated on the basis of inhibition of bacterial bioluminescence, were 0.42 ± 0.06 and 0.68 ± 0.01 mg Ag/L, respectively. Dissolution and bioavailability of Ag from NWs and nanospheres, analyzed with AAS or Ag-sensor bacteria, respectively, suggested that the toxic effects were caused by solubilized Ag(+) ions. Moreover, the antibacterial activities of Ag NWs suspension and its ultracentrifuged particle-free supernatant were equal. The latter indicated that the toxic effects of ~80-100 nm Ag nanostructures to Escherichia coli were solely dependent on their dissolution and no shape-induced/related effects were observed. Yet, additional nanospecific effects could come into play in case of smaller nanosilver particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa.

Because of microbial resistance to conventional antibiotics, there is increasing interest in silver, including silver nanoparticles (nano-Ag), in antimicrobial applications. However, questions remain regarding the relative roles of nano-Ag particles, versus Ag(+) ions released from nano-Ag dissolution, in imparting bacterial toxicity. Here, we developed a novel nano-Ag that, based on its cystei...

متن کامل

Nanotoxicity for E. Coli and Characterization of Silver Quantum Dots Produced by Biosynthesis with Eichhornia crassipes

Nanomaterials are widely used in health and biomedical applications, however, only a few studies investigate their toxic effects.  The present report signifies a contribution to the study of the toxic effects of silver nanoparticles on   E. coli cells, which is a model organism of anthropogenic pollution. The toxicity of nanoparticles depends on their chemical and surface properties, shape and ...

متن کامل

Synthesis, morphological, characterization and evaluation of antibacterial effects of Silver-Polyaniline nanocomposites against Escherichia coli

Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...

متن کامل

Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere-nanowire joined system.

A top-to-bottom joined system consisting of a silver nanowire and nanospheres was fabricated by embedding silver nanospheres on a glass or silicon substrate on which 3-aminothiophenol as an analyte molecule was adsorbed, and then placing silver nanowires on the substrate to make gap sites between a nanowire and nanospheres. In the far-field Raman measurements, the sphere under the wire exhibite...

متن کامل

Combined application of sub-toxic level of silver nanoparticles with low powers of 2450 MHz microwave radiation lead to kill Escherichia coli in a short time

Objective(s):Electromagnetic radiations which have lethal effects on the living cells are currently also considered as a disinfective physical agent.   Materials and Methods: In this investigation, silver nanoparticles were applied to enhance the lethal action of low powers (100 and 180 W) of 2450 MHz electromagnetic radiation especially against Escherichia coli ATCC 8739. Silver nanoparticles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013